Householder transformation
In linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder.[1]
Its analogue over general inner product spaces is the Householder operator.
Definition
[edit]Transformation
[edit]The reflection hyperplane can be defined by its normal vector, a unit vector (a vector with length ) that is orthogonal to the hyperplane. The reflection of a point about this hyperplane is the linear transformation:
where is given as a column unit vector with conjugate transpose .
Householder matrix
[edit]The matrix constructed from this transformation can be expressed in terms of an outer product as:
is known as the Householder matrix, where is the identity matrix.
Properties
[edit]The Householder matrix has the following properties:
- it is Hermitian: ,
- it is unitary: (via the Sherman-Morrison formula),
- hence it is involutory: .
- A Householder matrix has eigenvalues . To see this, notice that if is orthogonal to the vector which was used to create the reflector, then , i.e., is an eigenvalue of multiplicity , since there are independent vectors orthogonal to . Also, notice , and so is an eigenvalue with multiplicity .
- The determinant of a Householder reflector is , since the determinant of a matrix is the product of its eigenvalues, in this case one of which is with the remainder being (as in the previous point), or via the Matrix determinant lemma.
Applications
[edit]Geometric optics
[edit]In geometric optics, specular reflection can be expressed in terms of the Householder matrix (see Specular reflection § Vector formulation).
Numerical linear algebra
[edit]Householder transformations are widely used in numerical linear algebra, for example, to annihilate the entries below the main diagonal of a matrix,[2] to perform QR decompositions and in the first step of the QR algorithm. They are also widely used for transforming to a Hessenberg form. For symmetric or Hermitian matrices, the symmetry can be preserved, resulting in tridiagonalization.[3]
QR decomposition
[edit]Householder transformations can be used to calculate a QR decomposition. Consider a matrix tridiangularized up to column , then our goal is to construct such Householder matrices that act upon the principal submatrices of a given matrix
via the matrix
.
(note that we already established before that Householder transformations are unitary matrices, and since the multiplication of unitary matrices is itself a unitary matrix, this gives us the unitary matrix of the QR decomposition)
If we can find a so that
we could accomplish this. Thinking geometrically speaking, we are looking for a plane so that the reflection of about the plane happens to land directly on the basis vector. In other words,
1 |
for some constant . However, this also shows that
.
And since is a unit vector, this means that
2 |
Now if we apply equation (2) back into equation (1).
Or, in other words, by comparing the scalars in front of the vector we must have
.
Or
Which means that we can solve for as
This completes the construction; however, in practice we want to avoid catastrophic cancellation in equation (2). To do so, we choose the sign of so that
Tridiagonalization
[edit]This procedure is presented in Numerical Analysis by Burden and Faires. It uses a slightly altered function with .[5] In the first step, to form the Householder matrix in each step we need to determine and , which are:
From and , construct vector :
where , , and
- for each
Then compute:
Having found and computed the process is repeated for as follows:
Continuing in this manner, the tridiagonal and symmetric matrix is formed.
Examples
[edit]In this example, also from Burden and Faires,[5] the given matrix is transformed to the similar tridiagonal matrix A3 by using the Householder method.
Following those steps in the Householder method, we have:
The first Householder matrix:
Used to form
As we can see, the final result is a tridiagonal symmetric matrix which is similar to the original one. The process is finished after two steps.
Computational and theoretical relationship to other unitary transformations
[edit]The Householder transformation is a reflection about a hyperplane with unit normal vector , as stated earlier. An -by- unitary transformation satisfies . Taking the determinant (-th power of the geometric mean) and trace (proportional to arithmetic mean) of a unitary matrix reveals that its eigenvalues have unit modulus. This can be seen directly and swiftly:
Since arithmetic and geometric means are equal if the variables are constant (see inequality of arithmetic and geometric means), we establish the claim of unit modulus.
For the case of real valued unitary matrices we obtain orthogonal matrices, . It follows rather readily (see orthogonal matrix) that any orthogonal matrix can be decomposed into a product of 2 by 2 rotations, called Givens Rotations, and Householder reflections. This is appealing intuitively since multiplication of a vector by an orthogonal matrix preserves the length of that vector, and rotations and reflections exhaust the set of (real valued) geometric operations that render invariant a vector's length.
The Householder transformation was shown to have a one-to-one relationship with the canonical coset decomposition of unitary matrices defined in group theory, which can be used to parametrize unitary operators in a very efficient manner.[6]
Finally we note that a single Householder transform, unlike a solitary Givens transform, can act on all columns of a matrix, and as such exhibits the lowest computational cost for QR decomposition and tridiagonalization. The penalty for this "computational optimality" is, of course, that Householder operations cannot be as deeply or efficiently parallelized. As such Householder is preferred for dense matrices on sequential machines, whilst Givens is preferred on sparse matrices, and/or parallel machines.
See also
[edit]Notes
[edit]- ^ Householder, A. S. (1958). "Unitary Triangularization of a Nonsymmetric Matrix" (PDF). Journal of the ACM. 5 (4): 339–342. doi:10.1145/320941.320947. MR 0111128. S2CID 9858625.
- ^ Taboga, Marco. "Householder matrix, Lectures on matrix algebra".
- ^ Schabauer, Hannes; Pacher, Christoph; Sunderland, Andrew G.; Gansterer, Wilfried N. (2010-05-01). "Toward a parallel solver for generalized complex symmetric eigenvalue problems". Procedia Computer Science. 1 (1): 437–445. doi:10.1016/j.procs.2010.04.047.
- ^ Saad, Yousef (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics. pp. 11–12.
- ^ a b Burden, Richard; Faires, Douglas; Burden, Annette (2016). Numerical analysis (10th ed.). Thomson Brooks/Cole. ISBN 9781305253667.
- ^ Renan Cabrera; Traci Strohecker; Herschel Rabitz (2010). "The canonical coset decomposition of unitary matrices through Householder transformations". Journal of Mathematical Physics. 51 (8): 082101. arXiv:1008.2477. Bibcode:2010JMP....51h2101C. doi:10.1063/1.3466798. S2CID 119641896.
References
[edit]- LaBudde, C.D. (1963). "The reduction of an arbitrary real square matrix to tridiagonal form using similarity transformations". Mathematics of Computation. 17 (84). American Mathematical Society: 433–437. doi:10.2307/2004005. JSTOR 2004005. MR 0156455.
- Morrison, D.D. (1960). "Remarks on the Unitary Triangularization of a Nonsymmetric Matrix". Journal of the ACM. 7 (2): 185–186. doi:10.1145/321021.321030. MR 0114291. S2CID 23361868.
- Cipra, Barry A. (2000). "The Best of the 20th Century: Editors Name Top 10 Algorithms". SIAM News. 33 (4): 1. (Herein Householder Transformation is cited as a top 10 algorithm of this century)
- Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 11.3.2. Householder Method". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8. Archived from the original on 2011-08-11. Retrieved 2011-08-13.